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NUMERICAL MODELING OF INTERIOR BALLISTICS

PROCESSES IN LIGHT GAS GUNS

UDC 532.546; 533.6.011V. Z. Kasimov, O. V. Ushakova, and Yu. P. Khomenko

An improved procedure for modeling the operation of a light-gas gun is proposed. The motion of
working bodies in both the firing chamber and the light-gas chamber is studied within the framework
of the mechanics of heterogeneous media. The problem of barrel heating taking into account its melt-
ing and removal of thermal ablation products into the medium inside the bore is solved in a coupled
formulation. Heat and mass transfer and friction on the barrel surface are calculated using empirical
dependences. The deformable piston is considered compressible and elastoviscoplastic. Allowance is
made for the presence of a clearance between the lateral surface of the piston and the barrel bore
walls and the associated gas flow between the firing and the light-gas chamber. Calculation results
are given.

Key words: high-velocity acceleration, light-gas gun, multiple-velocity polydisperse mixture, de-
formable piston, ablation, erosion.

Light-gas guns (LGGs) have been used in studies of a high-velocity impact and aerodynamic and aerophysical
phenomena in a high-velocity flight. Modern LGGs consist of a firing chamber and piston and ballistic barrels joined
by a tapered adapter. The piston barrel length is about 150 diameters long, and the ballistic barrel length is up
to 300 diameters. The ratio of the diameters of the piston and ballistic barrels is in the range of 3–6, and the cone
angle of the tapered adapter between them is the about 10◦ [1]. Numerical modeling of the operation of LGGs
has been performed in many studies [2–7]). In the present paper, we describe an improved mathematical model of
interior ballistics processes that takes into account the main real processes.

The operation of the first stage is modeled taking into account the possibility of using a multicomponent
powder shell. It is assumed that the gas–powder mixture is a multiple-velocity polydisperse mixture of a gas and
powder species. Some species can burn with the formation of a gas phase, and others, for example, the barrel
ablation products are inert. The mixture of the working light gas and ablation products is also polydisperse;
therefore, the motion of these two media can be calculated within the framework of the same model. In the one-
dimensional approximation of the mechanics of heterogeneous media [8], the motion of a medium in the LGG barrel
bore is described by the following system of differential equations [7]:
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Here t is time, R is the radius of the barrel bore, x is the dimensional coordinate, S is the variable cross sectional area
of the barrel bore, J is the number of solid fractions, the subscript j denotes the fraction number, the subscript 0
corresponds to the starting gas, ρj is the mean density of the jth component of the gas mixture produced by
combustion of the jth fraction of species; ρ is the mean density of the gas mixture, δj and uj are the true density
and velocity of the jth fraction, u is the gas velocity, ej and e are the specific internal energies of the jth fraction
and the gas mixture, respectively, p is the pressure, βj is the volume portion of the jth fraction, α is the volume
portion of the gas, ψj is the degree of conversion of the jth fraction, mj is the mass rate of formation of the jth
gas in combustion of the jth sort of species per unit volume of the mixture, Mj is the mass rate of formation of
the jth sort of species per unit volume of the mixture due to ablation, fj is the resisting force that arises because
of the difference in phase velocities, σnτw is the shearing stress on the barrel bore wall, Qj is the heat release due
to combustion of the jth sort of species (calorific value), Qr is the heat flux per unit volume due to heat exchange
with the barrel walls, qj is the heat flux from the gas to the jth sort of inert species per unit volume (for burning
powder species, qj = 0), and Hj is the specific enthalpy of the jth fraction (for ablated species, the specific enthalpy
at the moment of melting with allowance for the heat of the phase transition).

It is assumed that combustion gases of different sorts of species do not react with one another and obey the
equations of state with a covolume [2–6]. In this case, the gas mixture is also described by an equation of state with
a covolume. The effective coefficients of the calorific and thermal equations of state of the mixture are expressed in
terms of the effective coefficients for the components from the equality conditions for temperatures and pressures [7].

The internal energy equation (7) is used for inert species, and the equation for the degree of conversion (8) is
used for powder species. All condensed components are considered incompressible. From the momentum equations
(4) and (5) it follows that ablated species introduced into the mixture have zero initial velocity and are accelerated
in the gas flow. We note that in the present model, the ablated species are considered spherical and their diameter
is identical for all fractions; i.e., different fractions of ablated species differ only in velocities. The internal energy
of inert species is considered a known function of temperature, and the heat of the phase transition is allowed
for. Before melting, the known dependences for alloy steels are used; after melting, the specific heat is considered
constant. The dependence of the species density on the temperature and phase transition is ignored.

The mass and force interaction of the phases is described by the following relations:
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Here S0j and W0j are the initial surface area and volume of a powder species of the jth sort, σj and Uj are the
relative burning surface area and the linear burning rate of the jth sort of species, ρ0 is the true gas density, deff is
the effective species diameter, Cdj is a resistance coefficient that depends on the parameters of the gas equation
of state, the Reynolds number of the relative motion of the gas, the species shape, and the gas flow restriction
(volume fraction of the gas), Twj is the surface temperature of the jth sort of species, Tg is the gas temperature,
sj is the surface area of the jth sort of species per unit of their volume (for spherical species, sj = 6/de), Nuj is

613



the dimensionless coefficient of heat exchange between the gas and the jth sort of species, defined by the following
formula [8]:

Nuj =

{
2 + 0.636αRej Pr 1/3, Rej 6 33.3,

2.274 + 1.993(αRej)0.67Pr 1/3, Rej > 33.3.

Here Rej = ρ0|u − uj |/(sjµ) is the Reynolds number of the relative motion of the gas, Pr = cpµ/λ is the Prandtl
number, cp, and µ, and λ are the specific heat, viscosity, and thermal conductivity of the gas, respectively.

The interaction of the polydisperse medium with the barrel bore walls is found by calculating the coupled
problem of the wall temperature distribution in gas flow. The thermal layer on the wall is considered thin enough
to be described by the one-dimensional heat-conduction equation [9]
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,

where δb, cpb, and λb are the density, specific heat at constant pressure, and thermal conductivity of the barrel
material, respectively, and y is the space variable normal to the barrel surface.

At the initial time, we specify a uniform initial temperature distribution T (x, y, t = 0) = T0. It is assumed
that in the barrel bore, the polydisperse medium interacts with the wall only by means of the gas; i.e., the possible
interaction of condensed species with the barrel surface is ignored in the present model. The problem is solved
subject to the boundary conditions

y = 0: − λb
(∂T
∂y

)
w

= qw, y →∞:
(∂T
∂y

)
∞

= 0, (9)

where the subscript w corresponds to the barrel bore surface and qw is the heat flux from the medium in the bore
to the barrel, determined by Newton’s laws [9]:

qw = Nuλ(Tw − Tg)/D

[D is the bore diameter and Nu is the dimensionless heat-transfer factor (Nusselt number)].
After the beginning of melting, one should replace the first boundary condition (9) by the condition of

constant surface temperature and add the equation of displacement of the melting boundary:

Tw = T∗, y =

t∫
0

uw dt, δbuwχ = qw + λb
∂T

∂y
.

Here T∗ is the melting point, uw is the rate of displacement of the melting boundary along the normal to the surface,
and χ is the latent heat of melting.

On the right sides of Eqs. (1)–(8), the source terms accounting for w the interaction with the barrel bore
walls are defined by the formulas

σnτw = −ζρ0u|u|/8, Qr = −2qw/R, Mja = 2δbuw/R, Mj = 0 (j 6= ja),

where ζ is the friction coefficient; the subscript ja corresponds to the number of the fraction that is considered
ablated at the current time.

From the formula for Mja it follows that the molten material of the barrel is entirely carried away by
the gas flow. Obviously, the species entrained in the flow later have the lower velocity; i.e., they have a greater
decelerating effect on the accelerating gas. The continuous species velocity distribution is replaced by a stepped
one with the required accuracy; this is achieved by choosing the number fractions from preliminary calculations for
each particular case.

Determining the dependences of the friction and heat exchange of the working gas with the barrel on the
parameters of the medium in the bore under the extreme conditions taking place in LGGs is an independent problem,
whose solution was beyond the scope of the present study. At the same time, the use of dependences obtained for
steady-state conditions is a conventional approach. This approach was justified in [10], where flow under the
conditions of the Lagrange problem was modeled using the Reynolds equations in a narrow bore approximation.
From a comparison of calculation results with the empirical Gukhman–Ilyukhin dependences given in [11], it was
concluded that these dependences, which take into account the temperature factor, are appropriate for calculating
the friction stress and heat transfer on the wall. However, these conclusions are based on calculations of the initial
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stage of motion of the piston, when its velocity is well below the velocity of sound in the gas behind it. Estimates
shows that for the data given in [10], the highest gas velocity is approximately 700 m/sec, which is an order of
magnitude lower than that in a LGG. One should also bear in mind that the conditions of the Lagrange problem
differ significantly from the LGG operation conditions, where the gas in the light-gas chamber is severely heated
by incoming shock waves. In the present study, the friction and heat-transfer coefficients were determined from the
relations of [12–15] with correction factors (matching parameters):

ζ = Cf (M , η)(0.0032 + 0.22 Re−0.237),

Nu = 0.022Pr 0.43 Re0.8(Tg/Θ)0.42, Re = ρ0|u|D/µ.
(10)

Here Cf is the correction factor for the compressibility and temperature nonequilibrium of the medium, Re and
M are Reynolds and Mach numbers, respectively, η = Tw/Tg is the temperature factor, and Θ is the flow stagnation
temperature.

In the literature, one can find a number of different relations, but calculations showed that formulas (10)
provide for the most accurate description of a shot. In this case, correction factors are not needed or the factors
introduced in some cases are much closer to unity than those in different relations.

System (1)–(8) is solved numerically subject to the following initial conditions:

p(x, 0) = p0, u(x, 0) = 0, T (x, 0) = T0,

ρj(x, 0) = ρj0, βj(x, 0) = βj0(x), uj(x, 0) = 0, j = 1, . . . , J,

Here ρj0, p0, and T0 are parameters that characterize the initial state of the gas phase and βj0(x) is the initial
spatial distribution of the jth fraction.

In specifying the boundary conditions, we consider the bottom of the firing chamber as a fixed impermeable
boundary, on which the nonpenetration condition is imposed. On the boundary with the piston, the boundary
conditions consist of the nonpenetration condition (if the effect of the clearance between the lateral surface of the
piston and the barrel bore walls is ignored) and the continuity condition for the mass, momentum, and energy fluxes
taking into account the gas flow through the clearance. On the shell, we also impose nonpenetration conditions and
the velocity and position of the shell are determined by integrating the equation of motion

mpr
d2xpr
dt2

= S(pl − pr)− Ffr,

where mpr is the mass of the shell, xpr is the coordinate of the shell, Ffr is the friction force, and pl and pr are the
pressures on the left and right of the shell, respectively.

The deformable piston is considered as a separate calculation region. To describe its motion, we restrict
ourselves to the case of axisymmetric flow. We assume that the originally plane material cross sections of the piston
remain unchanged throughout the motion and the radial velocity component in the energy equation can be ignored.
Then, in the one-dimensional approximation, the motion of the piston is described by the equations [16]
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+
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=
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∂x
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= σxxp

∂(upF )
∂x

+ σnnext

(∂F
∂t

+ up
∂F

∂x

)
+ 2πRpqgp,

where the subscript “ext” corresponds to the values of the parameters on the external surface of the piston, Rp is
the radius of the piston, F = πR2

p is the cross-sectional area of the piston, and qgp is the heat flux on the outer
surface of the piston; the remaining notation is conventional.

The calorific equation of state for the material of the piston is written as

ep(pp, ρp) = (pp − c20(ρp − ρp0))/((k − 1)ρp).

For high-pressure polyethylene, ρp0 = 0.91903 g/cm3, c0 = 2380 m/sec, and k = 1.63098. The constants are
evaluated from the experimental data of [17].
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In motion, the piston is subjected to considerable deformations beyond the limits of elasticity. It is also known
that polymeric materials have viscosity. Therefore, to describe the rheological behavior of the piston material, we
use an elastoviscoplastic model.

It is assumed that at the initial moment, the piston is at rest and density and a stress distribution along
the piston length are specified. At the butt ends of the piston, the continuity conditions for the stress vector with
passage through the contact surfaces are satisfied.

In [3, 7], it was noted that after a shot, there are no traces of contact with the barrel bore surface on part
of the lateral surface of the piston. One of the reasons of this phenomena is the presence of a gas layer between
the lateral surface of the piston and the bore surface. Therefore, the piston motion is modeled taking into account
the presence of a clearance. To determine the magnitude of the clearance δ(x, t) = R − Rp, we use the continuity
condition for the stress vector on the lateral surface of the piston with the gas in the clearance:

σrrp = −pg

(pg is the gas pressure in the clearance).
The gas flow in the clearance is described by the equations obtained by integration of the equations for

plane flows of a viscous heat-conducting gas over the width of the clearance [14]. It is assumed in this case that the
transverse velocity component and the transverse density and pressure gradients can be ignored and the longitudinal
velocity profile is specified. The equations have the following form [16]:
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Here qgb is the heat flux on the barrel bore surface (like qgp, it was determined using the empirical formulas of
[12, 13]), U is the velocity averaged over the volume flow rate, and ug is the longitudinal velocity whose distribution
is given by

ug(x, y, t) = up
y

δ
+

2k + 1
2k

(up
2
− U

)[(2y
δ
− 1
)2k

− 1
]

(k is a positive integer). For k = 1, this function coincides with the known exact solutions of the equations of
a Couette viscous incompressible fluid [14]. It is assumed that for laminar flow k = 1 and for turbulent flow k

increases with increase in Reynolds number:

k =

{
1, Rec < 2000,

E((3/128) Rec exp [−(2.809 + 7272 Re−1.23
c )]− 1/2), Rec > 2000.

Here E(z) is the integer part of z (special function), Rec = ρgUDh/µg is the Reynolds number, and Dh is the
hydraulic diameter. The dependences written above approximate empirical data on the hydraulic flow resistance [18].
Equations (11) are supplemented by the gas equations of state. To distinguish a corresponding solution of the system,
natural initial and boundary conditions are specified.

The equations describing the gas flow in the barrel bore and in the clearance were calculated using improved
Godunov’s method [3, 7], which has second-order approximation in time and third-order approximation in the space
coordinate.

To estimate the effect of the clearance, we calculated a number of versions of motion of the deformable
piston in the LGG barrel with initial clearances of 1 µm (which corresponds to surface roughness) to 0.2 mm. The
calculation results show that the clearances available at the initial moment decrease. However, even if the clearance
in a calculation is retained intentionally, the gas flow through it does not have a significant effect on the interior
ballistics parameters of the shot. In this connection, the presence of a clearance was ignored in the calculations
given below.
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TABLE 1

Experiment ω, g mp, g mpr, g p0 · 10−4, Pa
Calculation Experiment

up, m/sec ud, m/sec up , m/sec ud, m/sec

20/80 200 888 0.9407 6.90 848.8 9555 826.6 9418
21/81 225 888 0.9475 15.52 879/3 7480 872.0 7864
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Fig. 1. Pressure on the shell (solid curves) and shell velocity (dashed curves) versus time: (a) shot
20/80, (b) shot 21/81; curve 1 refers to calculations ignoring heat release and ablation and curve 2
refers to calculations taking into account heat losses.

Calculations of a series of shots from a half-inch NASA LGG were carried out. The calculations were
performed both taking into account and ignoring thermal losses and barrel ablation. Figures 1–3 give calculation
results for two experiments (shots 20/80 and 21/81) [4] with close loading parameters (see Table 1); in this case,
the experimentally measured muzzle velocities differ significantly.

The calculations were conducted on {10,10,20}, {10,10,50}, {20,20,50}, {20,20,100}, and {20,20,200} moving
grids (the first, second, and third numbers are the numbers of calculation meshes in the gas–powder mixture, in the
piston, and in the region of the mixture of the light gas with barrel ablation products, respectively). An analysis
of the calculation results for the LGG shows that the most adequate is the {20,20,100} grid because the difference
of muzzle velocities in calculation on this grid and the finer {20,20,200} grid is 0.3% and the maximum pressure
difference is about 2%. Therefore, below we give the calculation results obtained on the indicated grid.

Some loading parameters and measured and calculated piston velocities up and muzzle velocity of projec-
tiles ud are listed in Table 1. In both experiments, identical diaphragms were used and the experimental diaphragm
rupture pressure was 138 MPa. From Table 1 it follows that an insignificant increase in the mass of the powder
charge ω and a simultaneous increase in the initial hydrogen pressure p0 in experiment 21/81 in comparison with
experiment 20/80 led to a sharp decrease in the muzzle velocity.

Figure 1 gives calculated curves of the shell velocity ud and the pressure on the shell p versus time with and
without allowance for heat and mass transfer of the light and powder gases with the barrel bore walls. It is evident
that the motion of the light gas has a substantially wave nature; irrespective of the formulation of the problem, five
shock waves arrives at the projectile in both experiments, which correspond to surges on the pressure versus time
curves. Time is reckoned from the moment of speadup of the piston. It should be noted that allowance for heat
and mass transfer of light and powder gases with the barrel bore walls leads to an increase in the shot duration
by approximately 1.5 msec, which can be used in comparing calculated and experimental data. At the same time,
neglect of heat and of mass transfer in calculations results in considerably overestimated muzzle velocity of the shell
(by approximately 2 km/sec). The calculated piston and shell velocities obtained in the complete formulation are
compared with experimental values. An analysis of calculated data shows that the losses due to heat release by the
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Fig. 2. Isolines of the barrel bore wall temperature in kelvins in the light-gas region (above) and the
barrel bore profile with the extreme position of the piston (below): (a) shot 20/80; (b) shot 21/81.
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Fig. 3. Isolines of the mass fraction of the light gas: (a) shot 20/80; (b) shot 21/81.

barrel bore walls are much lower than the kinetic energy of the molten barrel material carried away by the light
gas flow. This is explained by the fact that total mass of the melt is comparable with the mass of the shell. In this
case, the velocity of the ablated species in the range of 4–6 km/sec; i.e., their specific kinetic energy is severalfold
higher than the calorific value of known explosives.

Figure 2 shows isolines of the surface temperature in the plane (x, t) calculated in the complete formulation.
In the formulation considered, the surface temperature cannot exceed the melting point of cannon steel; therefore,

618



the boundary of the ablation zone (shaded in Fig. 2) practically coincides with the closed isoline T = 1723 K.
The results presented here shows that a decease in the muzzle velocity in experiment 21/81 results from the faster
ablation. The ablation rate can be judged from Fig. 3, which gives isolines of the mass fraction of light gas in the
plane (x, t). In both experiments, the minimum mass concentration is at about 0.3, but in experiment 21/81, the
low concentration region is much wider, which is explained by the larger duration and extent of the ablation process.
From the configuration of the right boundary of the region occupied by a mixture of the light gas and melt species,
one can determine the mean condensed-phase species velocity, which was about 5 km/sec in both experiments.

To estimate the effect of the clearance on the LGG operation with allowance for the deformability of the
piston, we performed calculations of shot 20/80 with different initial clearances between the piston surface and the
barrel bore. An analysis of the calculation results shows that the presence of a small (0.1 mm) clearance does not
reduce the muzzle velocity but, on the contrary, increases it somewhat, apparently, because of a reduction in the
piston friction. However, the gain in the muzzle velocity is very small (about 40 m/sec) and decreases with increase
in the clearance. In conclusion, we note that the friction and heat-exchange coefficients defined by formulas (10)
were multiplied by a correction factor of 0.5 to match calculated and experimental data. This indicates that the
available data on friction and heat exchange under the conditions occurring in LGGs are insufficient.

Thus, the present paper gives an improved mathematical model for describing a shot from an LGG. A
comparison was performed of calculated and experimental data for a series of shots; an analysis of the results gives
a better understanding of the processes involved in gun firing.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 00-01-00857).
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10. A. M. Bubenchikov, Mathematical Models of Flow and Heat Exchange in Internal Problems of Dynamics of a
Viscous Gas [in Russian], Izd. Tomsk. Univ., Tomsk (1993).

11. I. P. Ginzburg, Applied Hydrogas-Dynamics [in Russian], Izd. Leningrad. Univ., Leningrad (1958).
12. S. S. Kutateladze, Heat Transfer and Hydrodynamic Resistance, Handbook [in Russian], Énergoatomizdat,
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